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Single-cell RNA-sequencing (scRNA-seq) permits transcrip-
tome-wide quantification of gene expression in individual 
cells. Technological advances in single-cell sequencing proto-

cols have led to exponential growth in the number of cells that can 
be profiled in a single experiment1. In response to these advances, 
a myriad of computational methods have been developed to facili-
tate preprocessing, differential expression, cell-type identifica-
tion and pseudotemporal ordering of scRNA-seq datasets, among 
other tasks2.

The maturation of scRNA-seq technology provides an opportu-
nity to identify cell-type-specific functional modules3–6, regulatory 
networks7 and their genetic determinants8 at a resolution that was 
until recently impossible, as exemplified by the recent discovery of 
the first quantitative trait loci for coexpression8. Because the num-
ber of cells profiled by a single scRNA-seq experiment can exceed 
the number of samples profiled by bulk RNA-seq even in large 
consortium projects, single-cell transcriptomics provides a fertile 
ground to characterize new cellular circuits9. However, single-cell 
transcriptomic datasets are distinguished in multiple respects from 
bulk RNA-seq datasets, in particular by an abundance of dropouts 
and by overdispersion10. The optimal measure of association to 
identify gene regulatory relationships in these datasets is conse-
quently unclear. A sensitive and specific measure of association that 
could be used to compare transcriptome-wide expression profiles 
between pairs of cells would likewise be of great use for compari-
sons of cell types across species, batches or datasets11–13, and ulti-
mately for the reconstruction of networks of cell types14–16.

Here, we conducted a systematic evaluation of 17 measures of 
association over a range of tasks in single-cell transcriptomics, 
including gene network analysis, cell clustering and disease gene 
identification. We first evaluated the functional coherence of gene 
coexpression networks constructed from a large single-cell tran-
scriptomics compendium with each measure of association, and 
explored the correspondence between these networks and other 
biological networks, including protein–protein interaction, cellu-
lar signaling and metabolic networks. Following the intuition that 
measures of association that prioritize biologically meaningful 

relationships should also result in increased reproducibility across 
datasets by better discriminating signal from noise, we quantified 
the reproducibility of coexpression network analysis of the major 
endocrine cell types of the pancreas across five separate datasets. We 
further assessed the ability of each measure of association to permit 
unbiased assignment of cell types from single-cell transcriptomes. 
Finally, we explored the potential of single-cell transcriptomics 
to implicate cell-type-specific patterns of gene coexpression in  
human disease.

Results
To conduct a comprehensive evaluation of measures of association 
for single-cell transcriptomics, we assembled a large compilation of 
213 scRNA-seq datasets, culled from 43 studies published between 
2014 and 2018 (Supplementary Data 1). These datasets varied over 
several orders of magnitude in the numbers of cells and genes  
they profiled (Fig. 1a,b), had varying proportions of dropouts  
(Fig. 1c,d) and were generated using a number of different sequenc-
ing protocols (Fig. 1e), which allowed us to jointly characterize the 
effects of technical variables and measures of association on gene 
network inference.

We constructed gene coexpression networks for each dataset 
in our scRNA-seq compendium using 17 measures of associa-
tion, analyzing a total of 3,621 networks. These measures included 
Pearson, Spearman and Kendall correlations; biweight midcorrela-
tion; weighted rank correlation17; three distance metrics (Euclidean, 
Manhattan and Canberra); and the cosine similarity. In line with 
the recent suggestion that measures of gene co-occurrence across 
cell types capture biologically meaningful relationships, we also 
evaluated the gene co-dependency index18, as well as the Jaccard 
coefficient, Dice coefficient and Hamming distance between vec-
tors describing gene joint presence or absence across cells, at any 
expression level. Because estimates of gene expression derived from 
sequencing experiments reflect relative rather than absolute abun-
dance19, we also evaluated two measures of proportionality, ϕs and 
ρp (ref. 20). Finally, we also evaluated mutual information21, an infor-
mation theoretic measure, and implemented a recently described 
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estimator of Kendall’s tau for zero-inflated continuous data22. Full 
details of our implementation and supporting source code are avail-
able in the Methods.

Functional coherence of single-cell gene coexpression networks. 
To quantify the functional coherence of each network, we first 
evaluated our ability to predict the biological properties of a gene 
(in this case, Gene Ontology terms) from those of its neighbors 
in the network23. We annotated each gene in the network with its 
known functions, then randomly withheld a subset of these labels 
and calculated the accuracy of gene function predictions made on 
the basis of coexpression alone in cross-validation (Methods). To 
mitigate the effects of larger studies on our results, we randomly 
sampled one dataset from each publication, and focused our further 
analysis on this subset (results from all 213 datasets are provided 
in Supplementary Fig. 1 and Supplementary Data 2). Across our 
single-cell transcriptome compendium, the two measures of pro-
portionality, ρp and ϕs, consistently performed best, with median 
areas under the receiver operating characteristic curve (AUC) of 
57.2% and 57.0%, respectively (Fig. 1; P > 0.9 for the comparison, 
Fisher integration of two-sided Brunner–Munzel tests). The next 
two top-performing metrics, the Manhattan distance and the zero-
inflated Kendall correlation, were likewise not significantly dif-
ferent (P = 0.089), although both were significantly less accurate 

than either measure of proportionality (all P ≤ 1.9 × 10−6). Notably, 
measures of gene co-occurrence performed relatively poorly, as did 
mutual information.

We next asked whether the functional coherence of single-cell 
coexpression networks varied with the number of cells profiled 
or the proportion of dropouts. Functional coherence was unre-
lated to the frequency of dropouts for all measures of associa-
tion (Supplementary Fig. 2a; all P ≥ 0.10, Spearman correlation). 
However, datasets with a larger number of cells consistently facili-
tated the reconstruction of more functionally coherent networks 
(Supplementary Fig. 2b, P < 0.05 for 7/17 measures of association 
after Benjamini–Hochberg correction), with the strongest effects 
for ρp, ϕs and the co-dependency index. This finding echoes recent 
analyses suggesting that, given a fixed sequencing capacity, profiling 
a greater number of cells at a shallower depth permits more accu-
rate reconstruction of transcriptional programs24. The performance 
of each measure of association remained relatively stable across 
sequencing protocols and as a function of transcript coverage, with 
ρp, ϕs, zero-inflated Kendall correlation and the Manhattan distance 
consistently among the top-performing metrics (Supplementary 
Figs. 3 and 4). The choice of measure of association explained 
substantially more variation in the overall functional coherence of 
inferred networks than experimental factors did; however, among 
the latter, the total number of cells was more strongly associated 
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Fig. 1 | Single-cell transcriptomics compendium and functional coherence of single-cell gene coexpression networks. a–e, Properties of scRNA-seq 
datasets considered in this study. a, Number of cells in each dataset. b, Number of genes in each dataset, after filtering. c, Proportion of gene expression 
measurements across all cells that were zero (dropouts) in each dataset, after filtering. d, Relationship between the number of cells and the proportion of 
dropouts in each dataset. The gray dotted line shows ordinary least-squares regression. e, Number of datasets collected with each scRNA-seq protocol. 
f, Functional coherence of single-cell gene coexpression networks (n = 43 datasets, one per publication). Known gene functions were randomly withheld 
and predicted from the coexpression network in threefold cross-validation, and the AUC was calculated to quantify the degree to which genes with similar 
functions are coexpressed in networks constructed with each measure of association. Box plots show the median (horizontal line), interquartile range 
(hinges) and smallest and largest values no more than 1.5 times the interquartile range (whiskers).
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with functional coherence than either biases in transcript coverage 
or the method of cell capture, whereas the proportion of dropouts 
was not significantly associated with functional coherence at all 
(Supplementary Fig. 5).

Convergence of macromolecular interactions. Gene coexpression 
networks that accurately capture cellular gene regulatory relation-
ships should intersect with cellular networks inferred from other 
data, such as physical protein–protein interactions25. We therefore 
next explored the correspondence between single-cell gene coex-
pression networks and four other types of biological networks: 
protein–protein interaction networks, metabolic pathways, signal-
ing networks and gene–gene associations inferred from text min-
ing. We constructed unweighted gene coexpression networks by 
retaining the top 50,000 edges from each method, and assessed the 
significance of network overlap using a randomization procedure26 
(Methods). Both measures of proportionality (ρp and ϕs) yielded 
coexpression networks with highly significant intersections with 
other cellular networks, as did rank correlation coefficients (Fig. 2),  
and these trends were robust to the precise number of edges 
retained (Supplementary Fig. 6 and Supplementary Data 3). These 
results suggest that, in addition to ranking functionally related gene 
pairs above unrelated gene pairs in general, rank correlations and 
measures of proportionality also prioritize physically interacting 
proteins among the highest-ranked gene pairs.

Reproducibility. We next hypothesized that measures of asso-
ciation that prioritize biologically meaningful relationships should 
have the effect of increasing reproducibility across datasets, by bet-
ter discriminating signal from noise. Consequently, we evaluated 
the reproducibility of gene coexpression networks inferred from 
each measure of association. To assess reproducibility, we ana-
lyzed five scRNA-seq datasets of alpha, beta and delta cells from 
the human pancreas, for a total of 30 pairwise comparisons, and 
quantified the degree of reproducibility of network pairs. Across all 
cell types, measures of proportionality yielded the most reproduc-
ible networks, both with median pairwise Z scores of 89.9 relative to 

permuted networks (Fig. 3). The Dice coefficient and Jaccard index, 
both of which quantify the degree to which pairs of genes are either 
expressed or not expressed within the same cells, likewise con-
structed highly reproducible networks. In contrast, coexpression 
networks constructed from rank correlations were less reproduc-
ible, although nearly all pairwise comparisons remained statisti-
cally significant (27/30 pairs with Bonferroni-corrected P < 0.05 for 
Spearman and Kendall correlations).

Cell-type clustering. Measures of association can also be used to 
define the similarities of pairs of cells on the basis of their tran-
scriptome profiles—for instance, during unsupervised cell-type 
discovery, or when a cell population of interest is compared to a 
reference dataset of known cell types. To quantify the performance 
of each measure of association in identifying cell–cell relation-
ships, we hierarchically clustered single-cell transcriptomes from 
seven human cell lines27, using the adjusted Rand index to mea-
sure the correspondence between the observed clusters and the cell 
lines of origin. Measures of proportionality clustered cells with the 
greatest accuracy (Fig. 4 and Supplementary Fig. 7). The gene co-
dependency index, which performed relatively poorly in coexpres-
sion network analysis, was also among the most accurate methods, 
whereas the zero-inflated Kendall correlation was less accurate in 
comparisons of cells, rather than genes. Notably, the gene co-depen-
dency index produced the most accurate clustering when the analy-
sis was restricted to two cell lines that were profiled in two different 
batches, which suggests that patterns of gene presence or absence 
may be more pronounced for cells of the same type across batches 
than the similarity of absolute expression values (Supplementary 
Fig. 8). We obtained similar results when using the normalized 
mutual information to evaluate clustering accuracy (Supplementary 
Fig. 9), or when applying the Louvain clustering algorithm to the 
shared nearest-neighbor graph28 instead of hierarchical clustering 
(Supplementary Fig. 10).

Cell-type-specific disease gene networks. In bulk tissue, gene coex-
pression network analysis has led to insights into the pathobiology  
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of neurological29 and psychiatric30,31 disease, and in keeping with 
these successes, a number of methods have been developed to 
identify interconnected modules of disease genes within molecu-
lar interaction networks32–34. The availability of cell-type-specific 
brain transcriptomes on a massive scale5,35 offers an opportunity 
to identify cellular networks that drive disease pathogenesis at the 
level of individual cell types. To evaluate measures of association 
in this context, we constructed coexpression networks for 39 cell 
types in the mouse central nervous system (CNS) and asked which  

measures of association could most accurately predict genes impli-
cated in neuropsychiatric disorders. Measures of proportionality 
again yielded the most accurate predictions, although the co-depen-
dency index, Pearson correlation and rank correlations also per-
formed well (Fig. 5a).

To highlight the power of cell-type-specific gene coexpression 
networks to identify particular cell types associated with disease  
etiology, we made use of an scRNA-seq atlas of the mouse CNS  
vasculature36 to investigate whether genes associated with cerebro-
vascular disease (CVD) are selectively coexpressed in any subtype 
of brain vasculature cells in the CNS (Fig. 5b). Known CVD disease 
genes were coexpressed in cell types classically involved in CVD 
pathology and the integrity of the blood–brain barrier, including 
microvessel endothelial cells37 and pericytes38. Surprisingly, how-
ever, CVD genes were also strongly coexpressed in a recently discov-
ered subpopulation of perivascular fibroblast-like cells expressing 
the marker gene Pdgfra, which reside in the perivascular space and 
are proposed to be a key component of fluid transfer from the brain 
parenchyma to the cerebrospinal fluid36. The specific coexpression 
of CVD genes in these cells may reflect a previously unappreciated 
role in CVD pathophysiology.

discussion
We report a large-scale evaluation of measures of association for 
single-cell transcriptomics. Across a large number of analytical 
tasks, two measures of proportionality, ρp and ϕs, consistently per-
formed well, reconstructing gene networks with high functional 
coherence and significant overlap with other cellular interaction 
networks, yielding reproducible models of cellular organization 
across datasets generated using distinct experimental protocols and 
clustering transcriptomic profiles by their cell type of origin with 
high accuracy.

In contrast, several measures of association that are widely used 
in either single-cell or bulk transcriptomics, including Pearson cor-
relation, Euclidean distance, mutual information and cosine dis-
tance, performed relatively poorly on one or more tasks. Notably, 
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two measures of association designed specifically for single-cell 
transcriptomics, or zero-inflated continuous data more generally, 
performed well on only a subset of tasks. The gene co-dependency 
index18 accurately predicted disease genes and clustered cell types, 
particularly across batches, but performed more poorly in gene 
network analyses. The zero-inflated Kendall correlation22 yielded 
reproducible and functionally coherent gene coexpression net-
works, but performed only moderately well on the network overlap 
and clustering tasks.

The sparsity and overdispersion of scRNA-seq data pose a con-
siderable challenge to robust network inference from single-cell 
transcriptomics, relative to bulk data39. Substitution of measures 
of proportionality for more broadly used measures of association 
yielded gene coexpression networks with a degree of functional 
coherence similar to that which has previously been reported for 
bulk RNA-seq40. However, in comparison with approaches for tis-
sue- or cell-type-specific network reconstruction that integrate 
much larger compendia of data41, the absolute degree of predic-
tive power remained relatively low. Integration of single-cell gene 
expression with additional molecular phenotypes that can now be 
measured in high throughput, including the epigenome42 and pro-
teome43, could provide a means to further increase the accuracy of 
cell-type-specific network inference. Furthermore, it is conceiv-
able that only a subset of physiologically relevant functions can be 
accurately predicted for each cell type. It is also noteworthy in this 
respect that available ‘gold standards’ for evaluating network recon-
struction, such as gene function annotations and physical protein–
protein interactions, are based largely on biological relationships 
identified in bulk data, which raises the possibility that these are not 
reflected at the single-cell level.

The strong performance of ρp and ϕs can be rationalized on the 
basis that scRNA-seq captures only a small proportion of messen-
ger RNA in a cell. Consequently, gene expression estimates must 
be interpreted as relative measures of abundance. In the setting of 
bulk RNA-seq, correlations between relative abundances can lead 
to conclusions at odds with those drawn from absolute quantifica-
tions19. Our analysis suggests that substituting conventional mea-
sures of association with measures of proportionality could lead to 
an increase in the accuracy, and therefore interpretability, of diverse 
computational analyses for scRNA-seq beyond those evaluated 
here, such as the reconstruction of intercellular signaling networks 
on the basis of patterns of receptor and ligand expression44–46, or 
the analysis of temporally coupled gene expression measurements47. 
The computational time required to construct transcriptome-wide 
coexpression networks using measures of proportionality was com-
parable to that for other measures of association (Supplementary 
Fig. 11), which suggests that these methods are computationally 
efficient enough to scale with increasing numbers of cells profiled 
in individual experiments.

online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41592-019-0372-4.
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Methods
Datasets. We collected a total of 213 scRNA-seq transcriptomic datasets from  
43 different publications (Supplementary Data 1). Of these, 164 datasets were 
obtained from the Gene Expression Omnibus, 10 were obtained from the 10X 
Genomics website (https://support.10xgenomics.com/single-cell-gene-expression/
datasets) and the remaining 39 were obtained from http://mousebrain.org (ref. 35)  
(taxonomy level 3, file ‘l6_r3.loom’) and exported by cell type from the loom 
file format to CSV using the ‘loompy’ Python package (http://loompy.org). 
Whenever permitted by sample size, we separated different cell types according 
to the authors’ annotations to construct cell-type-specific coexpression networks. 
Human and mouse gene identifiers were mapped to Ensembl accessions using 
Bioconductor (packages org.Hs.eg.db and org.Mm.eg.db). Datasets were filtered 
to exclude non-protein-coding genes, as annotated in v.91 of the Ensembl human 
and mouse genome annotations. Datasets obtained from http://mousebrain.org 
were subsequently filtered to include only the 2,000 genes expressed in the largest 
number of cells, whereas datasets obtained from GEO and 10X Genomics were 
filtered to exclude genes with an expression of zero in more than 80% of samples. 
We additionally evaluated the effect of thresholds between 50% and 95%, and 
found that our results were largely similar across thresholds (Supplementary  
Fig. 12), but that rank correlations generally performed well only in datasets with  
a low proportion of dropouts, whereas measures of gene co-occurrence displayed 
the opposite trend (Supplementary Fig. 13).

Measures of association. We evaluated 17 measures of association in the context of 
single-cell transcriptomics, ranging from measures that are broadly used in analysis 
of gene expression data to measures that have not, to our knowledge, previously 
been applied in this setting. We provide a brief overview of each measure of 
association in the Supplementary Note. Pearson and Spearman correlations were 
calculated using the base R ‘stats’ package, as were the Euclidean, Canberra and 
Manhattan distances. Mutual information and biweight midcorrelation matrices 
were calculated using functions from the ‘WGCNA’ R package48 (v.1.66). Kendall 
correlation matrices were calculated using the fast Kendall’s tau function from the 
R package ‘pcaPP’ (v.1.9–73). Cosine distances were calculated in the ‘lsa’ package 
(v.0.73.1). The Sørensen–Dice coefficient was calculated in the ‘arules’ package49 
(v.1.6–1). Both measures of proportionality, ρp and ϕs, were calculated using the 
‘propr’ package20 (v.4.0.0). We additionally implemented custom R code to calculate 
the Hamming distance and Jaccard index on the basis of gene presence or absence; 
a weighted rank correlation17; the gene co-dependency index, which models the 
probability of gene co-occurrence under the binomial distribution18; and a recently 
described estimator of Kendall’s tau for zero-inflated data22. Matrices that were 
not naturally bounded by the range (–1, 1) were scaled to this range before further 
analysis. We implemented a single interface to access all 17 measures of association 
in the R package ‘dismay’ (Supplementary Software 1).

Functional coherence. We assessed the functional coherence of each network by 
evaluating the degree to which the functional properties of a gene (in this case, 
Gene Ontology terms) can be predicted from those of its neighbors in the network. 
In this analysis, networks are determined to have greater functional coherence 
if a gene’s functional annotations can be more accurately predicted by those of 
its neighbors, based on the principle of guilt by association40. Gene Ontology 
annotations were obtained from the UniProt-GOA database50, and the complete 
ontology was retrieved from the Gene Ontology website (file ‘go-basic.obo’), 
both downloaded 27 April 2017. UniProt accessions were mapped to Ensembl 
gene identifiers. Annotations supported by one or more of the evidence codes 
ND (no biological data available), IEA (inferred from electronic annotation), IPI 
(inferred from physical interaction) and NAS (non-traceable author statement), or 
associated with the qualifier NOT, were removed, and the remaining annotations 
were propagated up the ontology. Functional connectivity analyses were performed 
using EGAD23 (v.1.8.0), which uses a neighbor-voting algorithm to predict the 
functions of left-out genes in cross-validation. We constructed dense weighted 
gene coexpression networks, using each measure of association in turn to assign 
a weight to each gene–gene pair, using code adapted from the EGAD function 
‘build_coexp_network’. This approach ensures that for a given dataset, each 
measure of association produces the same number of connections, differing only 
in how they are ranked. These ranks are used to predict the functions of the subset 
of genes with annotations withheld. Threefold cross-validation was performed, 
and the mean area under the receiver operating characteristic curve was retained 
for each gene ontology term. Statistical comparisons of functional connectivity 
were performed using the Brunner–Munzel test, a non-parametric test robust to 
differences in the shape of distributions, as implemented in the R package ‘lawstat’ 
(v.3.2). Univariate analyses presented in Supplementary Fig. 5 were performed on 
the subset of protocols used in at least two different publications.

Molecular interaction network overlap. Human protein–protein interaction and 
signaling networks were obtained from HIPPIE51 and OmniPath52, respectively, and 
mapped to mouse using one-to-one orthologs downloaded from Ensembl BioMart 
(downloaded 7 April 2018). We obtained human and mouse metabolic pathways 
from Reactome53 and converted them into a metabolic pathway co-membership 
network by linking each pair of proteins that was present in a common pathway. 

We constructed human and mouse literature co-occurrence networks by filtering 
the STRING interaction database on the basis of the text-mining channel, 
requiring a minimum score of 500. For quantification of the overlap between 
coexpression networks and each macromolecular interaction network, the top-
ranked 50,000 edges from each dense coexpression matrix constructed in the 
functional coherence analysis were retained to construct a sparse unweighted 
coexpression network; we additionally performed the same analysis with the top 
20,000 or 100,000 edges retained from each dense coexpression network. Each 
target network was rewired 100 times using a degree-preserving algorithm26, as 
implemented in the ‘igraph’ R package (v.1.2.2), with the number of iterations 
set to ten times the number of edges in the network, and the significance of the 
coexpression network overlap was assessed on the basis of the Z score for the 
number of intersecting edges relative to the randomized networks.

Reproducibility. To assess reproducibility, we extracted cell-type-specific 
coexpression networks for alpha, beta and delta cells from five scRNA-seq studies 
of the human pancreas54–58 (accessions E-MTAB-5061, GSE84133, GSE81547, 
GSE81608 and GSE85241). For each pair of coexpression networks derived from 
the same cell type, we assessed reproducibility by using a permutation test in which 
we randomly permuted the rows and columns of the first distance matrix using 
the ‘vegan’ R package59 (v.2.5–2), and calculating the Z score of the Spearman 
correlation between the two matrices relative to permuted matrices60.

Cell clustering. Cell-type clustering accuracy was evaluated using an scRNA-seq 
dataset of 561 cells derived from seven cell lines, two of which were sequenced in 
two batches27, in which the ground truth (that is, the cell line of origin) was known 
for each transcriptome profile. We additionally calculated clustering accuracy 
for distance matrices limited to the two cell lines that were sequenced in two 
separate batches, to specifically evaluate the impact of batch effects. Clustering 
was performed using two different methods: hierarchical clustering and Louvain 
clustering of the shared nearest-neighbors graph. The former provides a broadly 
accurate61 and parameter-free benchmark (apart from the number of clusters, 
which is known a priori from the experiment design in this case), whereas the 
second method more closely reflects approaches adopted in widely used scRNA-
seq software28. Hierarchical clustering was implemented with the base R function 
‘hclust’, with the number of clusters set to seven (two in the batch experiments). 
The shared nearest-neighbor graph was calculated using code adapted from the 
‘scran’ R package (v.1.10.1)62, with Louvain clustering performed in the ‘igraph’ R 
package (v.1.2.2)63, and the parameter k in k-nearest-neighbor graph construction 
in the range (2, 5, 10, 20, 50). Accuracy was quantified using the adjusted Rand 
index and normalized mutual information, calculated using the R packages ‘mclust’ 
(v.5.4.1) and ‘ClusterR’ (v.1.1.6), respectively. Dendrograms were visualized with 
the R package ‘ggtree’ (v.1.14.4)64.

Disease gene analysis. We obtained disease genes for neuropsychiatric disorders 
from Phenopedia65 by obtaining all children of the term D001523 in the MeSH 
hierarchy. Disease gene connectivity in cell-type-specific coexpression networks 
was evaluated using EGAD23, as described above. CVD genes were obtained from 
Phenopedia using the NCI Metathesaurus term C0007820.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
The data that support the findings of this study are available from the following 
GitHub repository: https://github.com/skinnider/SCT-MoA. Raw data are  
available from the Gene Expression Omnibus, http://mousebrain.org, or  
https://support.10xgenomics.com, as detailed in the Methods; dataset identifiers 
are provided in Supplementary Data 1.

Code availability
The ‘dismay’ R package is available as Supplementary Software 1 and from the 
following GitHub repository: https://github.com/skinnider/dismay. R code used 
to reproduce the analysis and figures is available from the following GitHub 
repository: https://github.com/skinnider/SCT-MoA.
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